Exam Seat No: _____

C.U.SHAH UNIVERSITY WinterExamination-2015

Subject Name:Numerical Analysis

Subject Code: 4SC03MTE1

Branch: B.Sc. (Mathematics, Physics)

Semester: 3 Date: 08/12/2015 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

- a) Subtract the approximate numbers 57.4662 from 786.85.
- **b**) Round off the following numbers correct to four significant figures: *i*) 5.2056, *ii*) 0.0055672
- c) Construct a difference table for $y = x^3 + 2x + 1$, for x = 1, 2, 3, 4, 5.
- **d**) Prove that $\Delta \cdot \nabla = \Delta \nabla$.
- e) Write Lagrange's inverse interpolation formula.
- f) Construct a divided difference table for the following data

x	5	15	22	
y	7	36	160	

- g) If $y = 4x^6 5x$, find the percentage error in y at x = 1, if the error in x = 0.04.
- **h**) Prove that $\mu = \frac{1}{2} \left[E^{\frac{1}{2}} + E^{-\frac{1}{2}} \right].$
- i) Write Stirling's interpolation formula.
- **j**) Bessel's formula is most appropriate when *p* lies between.....
- **k)** Gauss forward interpolation formula involves odd difference below the central line and even differences on the central line. Determine whether the statement is True or False?

Page 1 || 4

(14)

- 1) The n^{th} divided difference of a polynomial of degree n is zero. Determine whether the statement is True or False?
- **m**) Divided differences are not symmetric functions of their argument. Determine whether the statement is True or False?
- **n**) If the interval of differencing be unity, then $\Delta^n [x]^n = n!$. Determine whether the statement is True or False?

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions (14) (05) (14) (15) (14) (15) (14) (15) (14) (15) (15) (15) (14) (15) (15)

b) Determine y(12) by Lagrange interpolation from the following values. (05)

x	11	13	14	18	20	23
y	25	47	68	82	102	124

c) Write down the approximate representation of $\frac{2}{3}$ correct to four significant figures (04) and then find: *i*) Absolute error, *ii*) Relative error, *iii*) Percetage error.

Q-3 Attempt all questions

a) Given the following table:

x	0	5	10	15	20
f(x)	1.0	1.6	3.8	8.2	15.4

Construct the difference table and compute f(21) by using Newton's Backward formula.

b) Using Newton's divided difference formula, find f(x) from the following data (05)

x	0	2	3	4	6	7
f(x)	0	8	0	-72	0	1008

c) Show that

$$i) \Delta[f(x) \cdot \phi(x)] = f(x+h) \cdot \Delta \phi(x) + \phi(x) \cdot \Delta f(x),$$

$$ii) \Delta\left[\frac{f(x)}{\phi(x)}\right] = \frac{\phi(x) \cdot \Delta f(x) - f(x) \cdot \Delta \phi(x)}{\phi(x+h)\phi(x)}, [\phi(x) \neq 0]$$
(04)

Page 2 || 4

(14) (05)

Q-4 Attempt all questions

a) Show that :

i)
$$\Delta^n u_{x-n} = u_x - n u_{x-1} + \frac{n(n-1)}{2} u_{x-2} - \dots + (-1)^n u_{x-n},$$

ii) $e^x \left(u_0 + x \Delta u_0 + \frac{x^2}{2!} \Delta^2 u_0 + \dots \right) = u_0 + x u_1 + \frac{x^2}{2!} u_2 + \dots$

b) From the following table, estimate the number of students who obtain mark 40 to (05) 45

Marks	30-40	40-50	50-60	60-70	70-80
No. of Students	31	42	51	35	31

c) Find f(x), when its first difference is $x^3 + 4x^2 + 2x + 7$. (04)

Q-5

Attempt all questions

- a) State and prove Newton's forward interpolation formula.
- b) From the following table, find the value of $e^{1.17}$ using Gauss's backward (05) interpolation formula.

x	1.00	1.05	1.10	1.15	1.20	1.25	1.30
y	2.7183	2.8577	3.0042	3.1582	3.3201	3.4903	3.6693

c) Show that
$$\Delta^n[ke^{ax}] = k (e^{ah} - 1)^n e^{ax}$$
. (02)

Q-6 Attempt all questions

- a) State and prove Bessel's interpolation formula.
- **b)** From the following table, find the value of x when y = 13.5, by using inverse (05) interpolation formula

x	93	96.2	100.0	104.2	108.7
y	11.38	12.80	14.70	17.07	19.91

c) Prove that
$$\Delta \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)} \right]$$
. (02)

Q-7Attempt all questions(14)a)State and prove Newton's Divided difference interpolation formula.(05)

- **b**) Use Lagrange's formula to express the function $\frac{x^2+x-3}{x^3-2x^2-x+2}$ as a sum of partial (05) fractions.
- c) Evaluate the missing terms in the following table.

Page 3 || 4

(14) (05)

(14) (07)

(14)

(07)

(04)

x	0	1	2	3	4	5
f(x)	0	?	8	15	?	35

Q-8 Attempt all questions

a) State and prove Lagrange's interpolation formula.

(14) (05)

(04)

b) From the following table, find f(34) using Laplace Everett's formula. (05) x 20 25 30 35 40

X	20	23	50	55	40
y = f(x)	11. 4699	12.7834	13.7648	14.4982	15.0463

c) If $f(x) = \frac{1}{x^2}$, find the divided differences [a, b] and [a, b, c].

Page 4 || 4

